If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+30^2=96^2
We move all terms to the left:
a^2+30^2-(96^2)=0
We add all the numbers together, and all the variables
a^2-8316=0
a = 1; b = 0; c = -8316;
Δ = b2-4ac
Δ = 02-4·1·(-8316)
Δ = 33264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{33264}=\sqrt{144*231}=\sqrt{144}*\sqrt{231}=12\sqrt{231}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{231}}{2*1}=\frac{0-12\sqrt{231}}{2} =-\frac{12\sqrt{231}}{2} =-6\sqrt{231} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{231}}{2*1}=\frac{0+12\sqrt{231}}{2} =\frac{12\sqrt{231}}{2} =6\sqrt{231} $
| 44^2+3^2=c^2 | | v-6=-12 | | (40+85)/y+2=20 | | c/7=10 | | (66+79)/(y+4)=42 | | 7x-1(3x+1)=4x-(3-x)-19 | | (27+67)/y=47 | | 4.2=10.6-2u | | (5*y)^2-77=59 | | (5*y^2)-77=59 | | Y=5x-7x+10+23 | | p=7/3N+34 | | 5x2=77 | | 7-7a=-7-5a | | 4b+1.8=6b | | -4p-6=-5p-3 | | -2x=8=-x+7 | | 8*y^2-21=39 | | -3r-3=-3 | | (y+11)/(9+9)=4 | | -16/19n=20/38 | | 7z-23=23 | | (y+3)/6+22=20 | | 2k+5=-11 | | 3*(y+14)/12=45 | | -1/39x+42)-5x=70 | | -(1)/(3)(9x+42)-5x=70 | | 4x+6=-(7x+12) | | 5(8x-5)+10=185 | | I2x+1I=-12 | | 16j+11+j=17j | | 4(m+2)+1-2(m+4)=0 |